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Abstract— A three-dimensional field solution is presented for 

axially polarized permanent magnet cylinders. The field 

components are expressed in terms of finite sums of elementary 

functions and are easily programmable. They can be used to 

determine the operating point of rare-earth magnet cylinders. 

They are also useful for performing rapid parametric 

calculations of field strength as a function of material 

properties and dimensions. The field components are 

developed for different magnet arrangements by taking into 

account the back iron. Also the method of images is used. Using 

the field equations, three-dimensional analytical expressions 

are derived for computing the magnetic force between axially-

polarized permanent-magnet cylinders for different magnetic 

arrangements. The field calculated results are in good 

agreement with the experimental data.   

 
     Keywords—Analytical calculation; magnetic field; permanent 

magnet; force calculation 
 

I. INTRODUCTION 

    There are numerous devices that use axially polarized 

permanent magnets (Fig. 1). Examples of these include 

stepper motors, axial-field permanent-magnet motors, axial 

couplings and linear PM generators [5-9]. Usually, in these 

devices, one of the magnets is driven by an external while 

the other is connected to a load. As the driven magnet 

moves it impacts a force to the loaded magnet forcing it to 

move once the loading drag and inertial forces have been 

overcome.  To predict the force, various assumptions can be 

made that simplify the analysis. In this article, three-

dimensional analytical expressions are derived for 

computing the field and the transmitted force. The analysis 

is based on the assumption of an ideal magnet that is 

characterized by fixed and uniform polarization. The 

solution method entails use of the vector potential, and 

ultimately leads to the numerical integration of the         

free-space Green’s function over two of its spatial variables. 

Consequently, the resulting field formulae are expressed as 

discrete sums of elementary functions. One of the key 

features of this work is that the field formulae can be readily  

programmed and are ideally suited for rapid parametric 

studies of field strength at any point outside the magnet [1-

3]. The authors have used these formulae to determine the 

operating point of existing rare-earth magnets, and to 

determine the optimum dimensions in order to achieve a 

specified field profile over an extended spatial region.  

The field formulae are developed for different magnet 

arrangements (Fig. 2) with back iron by using of the method 

of images [4].  The theory is demonstrated with some 

sample calculations that are verified with experimental 

results. Of interest here, for force calculation, only the axial 

field component of the driven magnet is considered at axial 

distance equal to  from the loaded magnet (Fig. 1). The 

derived force formulae can be obtained for different magnet 

arrangements in vertical motion. 

They are applicable for magnets made of rare earth 

materials such as NdFeB.  

 
II. THEORY 

 

    There are numerous techniques for computing the field 

due to permanent magnets. We assume that the magnetic 

material is ideal, uniformly polarized throughout, and then 

model it as a distribution of equivalent currents. The 

analysis starts with the magnetostatic field equations for 

current free regions: 
 

  H = 0       (1) 
 

and 
 

  B = 0       (2) 
 

where H is the magnetic field strength and B is the magnetic 

flux density. In magnetic materials, the two fields H and B 

are related to the physical magnetization M, 
 

B =  ( H + M )            (3) 

 

It is well-known that the two first-order field equations 

reduce to the second-order equation 
 

2
A = -   M        (4) 

 

where the vector potential A is given by 

 

B =   A       (5) 

 

If the magnetization is confined to a volume V and falls 

abruptly to zero outside, the solution to (4) can be written in 

the following integral form: 
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where S denotes the surface of the magnet and JM and jM are 

equivalent volume and surface current densities given by 

 

JM  =   M (volume current density)    (7) 

 

and 

 

jM = M  n (surface current density)    (8) 

 

respectively [4]. For the problem at hand, it is assumed that 

the magnetization is in the axial (z) direction, 

 

 ( )     ̂       (9) 

  

where the ± indicates the alternating polarity of adjacent 

poles. It follows from (7) that the volume current density is 

zero 

 

JM  =   M = 0,       (10) 

 

and, therefore, (6) reduces to 
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Fig. 1. Two axially polarized cylindrical magnet rings 

 

 

The B field can be computed from (11) and (5).  

First, it is necessary to determine the functional form of jM 

for the various surfaces as shown in Fig. 2.   

From (8) and (9) it follows that jM = 0 on the top and bottom 

of the magnet as the magnetization and surface normal are 

either parallel or antiparallel for these surfaces. There are 

two remaining surfaces to consider: 

 

 

 

      (12)

  

 

 

 

 

      (13) 

       

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Axially polarized cylindrical magnet rings 

 

 

The unit normals for these surfaces are as follows: 

 

                ̂   (inner surface) 

 ̂ =        (14) 

                ̂  (outer surface)  

 

and, therefore, the corresponding surface current densities 

are given by 

 

                ̂     (inner surface) 

jM =        (15) 

                  ̂     (outer surface) 

 

Taking into account the results of (12)-(15), (11) can be 

rewritten as follows 
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Note that A (r) has no z component. It can be written in 

radial component Ar and azimuthal component A: 
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It follows from (16) that the components Ar and A can be 

written explicity as 
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Equations (21) and (22) give the vector potential of an 

axially polarized cylindrical magnet; the field for this 

magnet B(r) can be obtained using (5).  Expressions for the 

three field components:  radial component (Br), azimuthal 

component (B), and axial component (Bz) are derived in 

[10]. For these derivations, it is useful to introduce the 

Green’s function notation 

 

 (    )   
 

|    |
                        (23) 

 

which in cylindrical coordinates (r,,z) reduces to 
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III. AXIAL FIELD COMPONENT (Bz) 

 

The axial component of the field follows from (5), 

specifically, 
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Substitution of (21) and (22) into (25) yields 
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The integral in ' can be evaluated numerically. For this 

work, Simpson’s method was found to be adequate 

(Appendix). Application of this method to (32) gives an 

equation for the axial field component, 
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 The remaining integrations in z' are evaluated with (50) of 

the Appendix. Use of this result yields  
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where I1 is defined in Appendix [10]. Eq. (28) gives the 

axial field due to the entire magnet.          

 

IV.  EFFECT OF BACK IRON 

 

     Let us consider the magnetic circuits shown in Fig. 3. 

The field in the gap region can be modeled to first order by 

use of the method of images. 

Note that the field can be considered to be a function of the 

spatial coordinates(r,, z) and the axial position of the 

magnet, i.e.,  

 

  (     )    (       
 ( )   ( ))    (29) 

 

where   (1) and   (2) are the positions of the bottom and top 

of the magnet on the z axis, respectively. According to the 

magnetic circuit shown in Fig. 3a, in which the magnet is in 

the air gap region, the positions   (1) and   (2) are given in 

the following equation 

 

  (1) = -h1 ,  
 (2) = 0     (30) 

With considering the mirror laws of magnetostatic in 

Cartesian coordinates and under the influence of one-sided 

back iron according to Fig.3b, eq.(30) can be written as  

  (1) = -2h1 ,  
 (2)  = 0     (31) 
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While under the influence of double-sided back iron 

according to Fig.3c, the field components in the air gap can 

be expressed as a superposition of the fields from an infinite 

sum of image magnets  

  (     )  ∑   (       
 ( )   ( ))           

  

    

         (  )   

                 

where the axial positions are given by the following 

recursive relations: 

 

  ( )            (     )   and 

  ( )      (     )       (33) 

 

where L is the air gap length between magnet and back 

iron. 

For the magnetic circuits shown in Fig.3a, b and c, the radial 

positions   (1) = R11 and   (2) = R12 remain constant.  
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 Fig. 3. Magnet Systems: 

a) Magnet in air gap region  

b) One-sided back iron 

c) Double-sided back iron 

 

V. FORCE CALCULATION 

 

The force between two magnets can be computed using the 

basic relation for the force on a distribution of current in an 

external field in axial direction (Bz) 

 

    ∫  ( )     ( )             (34)     

 

The idea is to represent one of the magnets as a distribution 

of equivalent currents and then to consider the field due to 

the other magnet as the external field (which can be 

computed from eq. (28)). 

With eqs. (7) and (8), the force on a magnetized body in the 

presence of an external field is 
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where M2 is the magnetization of the magnet 2 as shown in 

Fig. 1. 

Similarity to magnet1, there are two surfaces to the magnet 

2 to consider 
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Substitution of (28), (37) and (38) into (36) yields 
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Eq. (39) can be simplified with Simpson’s method, 
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The remaining integrations in z are evaluated with (51) of 

the Appendix. Use of this result yields  
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where I2 is defined in Appendix and the positions z(1) and 

z(2) are given in the following equation 

 

z(1) = , z(2) = +h2        (42) 

 

By taking into account the effect of back iron according to 

Fig. 4,  the force can be considered to be a function of the 

spatial coordinates and the axial positions of the two 

magnet, i.e., 

   

  (    )    ( ( )  ( )   ( )   ( ))                  (43) 

 

According to the magnetic circuit shown in Fig. 4a and 

Fig.4b, the positions z (1) and z (2) are given in (30) and 

(31), respectively. 

While under the influence of double-sided back iron 

according to Fig.4c, the force equation can be expressed as  
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where the axial positions are given by the following 

recursive relations 
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where  is the air gap length between the two magnets. 

 

VI. RESULTS 

 

  The theory was applied to an axially polarized cylinder 

type NdFeB magnets for the different magnet systems 

shown in Figs. 3 and 4 and verified experimentally. The 

parameters of the magnets used in the analysis are illustrated 

in Table 1. 

Computer programs are developed to calculate the magnetic 

flux density for the different magnet arrangements. For the 

field calculation as function of axial position z, the magnet 

is oriented symmetrically with respect to the x-y plane (i.e 

z=0 corresponds to the middle of the cylinder).  

TABLE 1. PARAMETERS OF THE MAGNETS 

 

Magnet 1 Magnet 2 
M1 = 930 kA/m   

R11 = 6 mm   

R12 = 12.5 mm 

h1
 = 16 mm 

            

M2 = 930 kA/m 

R21 = 6 mm  

R22 = 12.5 mm 

h2 = 8, 16 or 24mm  

 = 0 - 16 mm    
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Fig. 4. Magnet Systems for force calculation 

a) Magnet in air gap region  

b) One-sided back iron 

c) Double-sided back iron 

 

 

The field values of Bz were computed for different radial 

values and different magnet arrangements in Fig. 3. These 

results are shown in figs. 5 a-c.  
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(a) 

 
(b) 

 
(c) 

 

Fig. 5. Axial field vs. axial position z with radial position r as parameter 

and  = 0 for the magnet arrangements of Fig. 3: 

a) Fig. 3a; b) Fig. 3b; c) Fig. 3c 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Axial field vs. radial position r with axial position z as parameter 

and  = 0 for the magnet arrangements of Fig. 3: 

a)Fig. 3a; b) Fig. 3b; c) Fig. 3c 

0 10 20 30 40
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Axial Position z (mm)

A
x

ia
l 

F
ie

ld
 B

z
 (

T
) 

             r = 14 mm
             r = 15 mm
             r = 16 mm

0 10 20 30 40
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

A
x

ia
l 

F
ie

ld
 B

z
 (

T
)

Axial Position z (mm)

             r = 14 mm
             r = 15 mm
             r = 16 mm

0 10 20 30 40
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

A
x

ia
l 

F
ie

ld
 B

z
 (

T
)

Axial Position z (mm)

             r = 14 mm
             r = 15 mm
             r = 16 mm

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

A
x

ia
l 

F
ie

ld
 B

z
 (

T
)

Radial Position r (mm)

             z = 1 mm
             z = 2 mm
             z = 4 mm
*** measured values

*

*

*

* *

*

*
*

*

*
*

*

*

*

*
*

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

A
x

ia
l 

F
ie

ld
 B

z
 (

T
) 

Radial Position r (mm)

             z = 1 mm
             z = 2 mm
             z = 4 mm
*** measured values

*

*

*

* *

*

*
*

*

**

*

*

*

*
*

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

A
x

ia
l 

F
ie

ld
 B

z
 (

T
)

Radial Position r (mm)

             z = 1 mm
             z = 2 mm
             z = 4 mm
*** measured values

*

*

*

* *

*

*
*

*

**

*

*

*

**

INTERNATIONAL JOURNAL OF MATERIALS 
DOI: 10.46300/91018.2020.7.3 Volume 7, 2020

ISSN: 2313-0555 16



For the field calculation of Bz as function of radial position 

r, the magnet is oriented with upper surface in x-y plane (z = 

0). The field components Bz were computed along radial 

line above the surface of the magnet (z = 1, 2 and 4mm,  = 

0). The data for these calculations appear in figs. 6 a-c). 

The calculated values are compared with experimental 

results for some curves as shown in fig. 6 a-c) at z = 1 and 4 

mm. The magnetic flux density has been measured by using 

GAUSS METER Type 3251 (YOKOGAWA) with its 

probe. In general, the measured values results show good 

agreement with the theoretical results.  

Note that in different cases, the computed field values are 

slightly higher than the corresponding measured data. The 

reason for this difference is that the assumption of infinite 

iron back for some cases does not take into account the 

fringing (leakage) flux. Nevertheless, the predicted data are 

sufficiently accurate for parametric design and optimization. 

The force values were obtained for a series of separation 

distances which were on the order of a few millimeters and 

different magnet height h2. These values were obtained for 

different magnet arrangements of Fig. 4 and illustrated in 

Figs. 7,8 and 9. 
 

 

Fig. 7. Magnetic force vs.  according to Fig. 4a with h2 as parameter 

 

 

 

Fig. 8. Magnetic force vs.  according to Fig. 4b with h2 as parameter 

 
Fig. 9. Magnetic force vs.  according to Fig. 4c with h2 as parameter  

 

It is important to note that when programming the multipole 

summations in field and force equations, a higher degree of 

accuracy can be achieved with fewer mesh points if the total 

of a single summation over one index is evaluated and saved 

separately (as an intermediate step), and then the totals of 

the successive summations are added together to obtain the 

final sum. 

VII. CONCLUSION 

 

A three dimensional field solution has been derived for 

axially polarized magnetic cylinder for different magnet 

arrangements. The calculation is based on the assumption of 

ideal magnetization and is applicable to rare earth material 

such as NdFeB. The expressions for the field components 

have been expressed in terms of elementary functions that 

are readily programmed. Moreover, they allow rapid 

parametric studies of field strength and could be of 

considerable use in the design and optimization of numerous 

devices. The computation results for the flux density are in 

good agreement with the experimental data for different 

magnet arrangements. 

VIII. APPENDIX 

 

In this section, the variables  '(m), S(m) and I1 that appear 

in (27) and (28) and the variables  (m'), S'( m') and I2 that 

appear in (40) and (41)  are defined. Specifically 

 

  ( ) = 2pm /N     (46), 
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S(m) = 

1/3     (m=0)    

4/3 (m=1,3,5,…)        

2/3 (m=2,4,6,…)  

1/3 (m=N)    
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and 
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